Item type | Current library | Home library | Shelving location | Call number | Status | Barcode | |
---|---|---|---|---|---|---|---|
![]() |
American University in Dubai | American University in Dubai | Main Collection | TA 418.9 .S62 V47 2010 (Browse shelf(Opens below)) | Available | 5021344 |
Includes bibliographical references and index.
1. From Smart Materials to Smart Structures -- 1.1. Modern Materials: A Survey -- 1.1.1. Polymers -- 1.1.2. Structure and Classification of Polymers -- 1.1.3. Characteristic Properties of Polymers -- 1.1.4. Applications of Polymers -- 1.2. Ceramics -- 1.2.1. Properties of Ceramics -- 1.2.2. Applications of Ceramics -- 1.3. Composites -- 1.3.1. Micro-and Macrocomposites -- 1.3.2. Fibre-reinforced Composites -- 1.3.3. Continuous-fibre Composites -- 1.3.4. Short-fibre Composites -- 1.3.5. Fibre-matrix Composites -- 1.4. Introduction to Features of Smart Materials -- 1.4.1. Piezoelectric, Piezoresistive and Piezorestrictive -- 1.4.2. Electrostrictive, Magnetostrictive and Magnetoresistive -- 1.4.3. The Shape Memory Effect -- 1.4.4. Electro-and Magnetorheological Effects -- 1.5. Survey of Smart Polymeric Materials -- 1.5.1. Novel Inorganic Thin Film Materials -- 1.5.2. Integrative Polymeric Microsystems -- 1.5.3. Electroactive Polymers -- 1.6. Shape Memory Materials -- 1.6.1. Shape Memory Alloys -- 1.6.2. Magnetically Activated Shape Memory Alloys -- 1.6.3. Shape Memory Polymers -- 1.7. Complex Fluids and Soft Materials -- 1.7.1. Self-assembled Fluids -- 1.7.2. Electro-and Magnetorheological Fluids -- 1.7.3. Smart Polyelectrolyte Gels -- 1.8. Active Fibre Composites -- 1.9. Optical Fibres -- 1.10. Smart Structures and Their Applications -- 1.10.1. Medical Devices -- 1.10.2. Aerospace Applications -- 1.10.3. Structural Health Monitoring -- 2. Transducers for Smart Structures -- 2.1. Introduction -- 2.2. Transducers for Structural Control -- 2.2.1. Resistive Transducers -- 2.2.2. Inductive Transducers -- 2.2.3. Capacitive Transducers -- 2.2.4. Cantilever-type Mechanical Resonator Transducers -- 2.2.5. Eddy Current Transducer -- 2.2.6. Balancing Instruments -- 2.2.7. Transduction Mechanisms in Materials -- 2.2.8. Hydrodynamic and Acoustic Transduction Mechanisms -- 2.2.9. Transducer Sensitivities, Scaling Laws for Example Devices -- 2.2.10. Modelling and Analysis of a Piezoelectric Transducer -- 2.3. Actuation of Flexible Structures -- 2.3.1. Pre-stressed Piezoelectric Actuators -- 2.3.2. Shape Memory Material-based Actuators -- 2.4. Sensors for Flexible and Smart Structures -- 2.4.1. Resonant Sensors -- 2.4.2. Analysis of a Typical Resonant Sensor -- 2.4.3. Piezoelectric Accelerometers -- 2.4.4. The Sensing of Rotational Motion -- 2.4.5. The Coriolis Angular Rate Sensor -- 2.5. Fibre-optic Sensors -- 2.5.1. Fibre Optics: Basic Concepts -- 2.5.2. Physical Principles of Fibre-optic Transducers -- 2.5.3. Optical Fibres -- 2.5.4. Principles of Optical Measurements -- 2.5.5. Fibre-optic Transducers for Structural Control -- 3. Fundamentals of Structural Control -- 3.1. Introduction -- 3.2. Analysis of Control Systems in the Time Domain -- 3.2.1. Introduction to Time Domain Methods -- 3.2.2. Transformations of State Variables -- 3.2.3. Solution of the State Equations -- 3.2.4. State Space and Transfer Function Equivalence -- 3.2.5. State Space Realizations of Transfer Functions -- 3.3. Properties of Linear Systems -- 3.3.1. Stability, Eigenvalues and Eigenvectors -- 3.3.2. Controllability and Observability -- 3.3.3. Stabilizability -- 3.3.4. Transformation of State Space Representations -- 3.4. Shaping the Dynamic Response Using Feedback Control -- 3.5. Modelling of the Transverse Vibration of Thin Beams -- 3.5.1. Vibrations of Cantilever Beam -- 3.5.2. Vibrations of Simply Supported, Slender Uniform Beam -- 3.6. Externally Excited Motion of Beams -- 3.7. Closed-loop Control of Flexural Vibration -- 4. Dynamics of Continuous Structures -- 4.1. Fundamentals of Acoustic Waves -- 4.1.1. Nature of Acoustic Waves -- 4.1.2. Principles of Sound Generation -- 4.1.3. Features of Acoustic Waves -- 4.2. Propagation of Acoustic Waves in the Atmosphere -- 4.2.1. Plane Waves -- 4.2.2. Linear and Non-linear Waveforms -- 4.2.3. Energy and Intensity -- 4.2.4. Characteristic Acoustic Impedance -- 4.2.5. Transmission and Reflection of Plane Waves at an Interface -- 4.3. Circuit Modelling: The Transmission Lines -- 4.3.1. The Transmission Line -- 4.3.2. The Ideal Transmission Line -- 4.3.3. Matched Lines -- 4.3.4. Reflection from the End of a Transmission Line: Standing Waves -- 4.3.5. The Mechanical Transmission Line: An Electro-mechanical Analogy -- 4.3.6. Dissipation of Waves in Transmission Lines -- 4.4. Mechanics of Pure Elastic Media -- 4.4.1. Definition of Stress and Strain -- 4.4.2. Linear Elastic Materials -- 4.4.3. Equations of Wave Motion in an Elastic Medium -- 4.4.4. Plane Waves in an Infinite Solid -- 4.4.5. Spherical Waves in an Infinite Medium -- 4.4.6. Transmission Line Model for Wave Propagation in Isotropic Solids -- 4.4.7. Surface Waves in Semi-infinite Solids -- 5. Dynamics of Plates and Plate-like Structures -- 5.1. Flexural Vibrations of Plates -- 5.2. The Effect of Flexure -- 5.3. Vibrations in Plates of Finite Extent: Rectangular Plates -- 5.4. Vibrations in Plates of Finite Extent: Circular Plates -- 5.5. Vibrations of Membranes -- 6. Dynamics of Piezoelectric Media -- 6.1. Introduction -- 6.2. Piezoelectric Crystalline Media -- 6.2.1. Electromechanically Active Piezopolymers -- 6.3. Wave Propagation in Piezoelectric Crystals -- 6.3.1. Normal Modes of Wave Propagation in Crystalline Media -- 6.3.2. Surface Wave Propagation in Piezoelectric Crystalline Media -- 6.3.3. Influence of Coordinate Transformations on Elastic Constants -- 6.3.4. Determination of Piezoelectric Stiffened Coefficients -- 6.4. Transmission Line Model -- 6.4.1. Transmission Line Model for Wave Propagation in Non-piezoelectric Crystalline Solids -- 6.4.2. Transmission Line Model for Wave Propagation in Piezoelectric Crystalline Solids -- 6.5. Discrete Element Model of Thin Piezoelectric Transducers -- 6.5.1. One-port Modelling of Thin Piezoelectric Transducers -- 6.5.2. Two-port Modelling of a Piezoelectric Diaphragm Resting on a Cavity -- 6.5.3. Modelling of a Helmholtz-type Resonator Driven by a Piezoelectric Disc Transducer -- 6.5.4. Modelling of Ultrasonic Wave Motors -- 6.6. The Generation of Acoustic Waves -- 6.6.1. Launching and Sensing of SAWs in Piezoelectric Media -- 6.6.2. Wave Propagation in Periodic Structures -- 7. Mechanics of Electro-actuated Composite Structures -- 7.1. Mechanics of Composite Laminated Media -- 7.1.1. Classical Lamination Theory -- 7.1.2. Orthotropic, Transverse Isotropic and Isotropic Elastic Laminae -- 7.1.3. Axis Transformations -- 7.1.4. Laminate Constitutive Relationships -- 7.1.5. Dynamics of Laminated Structures -- 7.1.6. Equations of Motion of an Orthotropic Thin Plate -- 7.1.7. First-order Shear Deformation Theory -- 7.1.8. Composite Laminated Plates: First-order Zig-zag Theory -- 7.1.9. Elastic Constants Along Principal Directions -- 7.2. Failure of Fibre Composites -- 7.3. Flexural Vibrations in Laminated Composite Plates -- 7.3.1. Equations of Motion of Continuous Systems in Principal Coordinates: The Energy Method -- 7.3.2. Energy Methods Applied to Composite Plates -- 7.4. Dynamic Modelling of Flexible Structures -- 7.4.1. The Finite Element Method -- 7.4.2. Equivalent Circuit Modelling -- 7.5. Active Composite Laminated Structures -- 7.5.1. Frequency Domain Modelling for Control -- 7.5.2. Design for Controllability -- 8. Dynamics of Thermoelastic Media: Shape Memory Alloys -- 8.1. Fundamentals of Thermoelasticity -- 8.1.1. Basic Thermodynamic Concepts -- 8.2. The Shape Memory Effect: The Phase-transformation Kinetics -- 8.2.1. Pseudo-elasticity -- 8.2.2. The Shape Memory Effect -- 8.2.3. One-way and Two-way Shape Memory Effects -- 8.2.4. Superelasticity -- 8.3. Non-linear Constitutive Relationships -- 8.3.1. The Shape Memory Alloy Constitutive Relationships -- 8.4. Thermal Control of Shape Memory Alloys -- 8.5. The Analysis and Modelling of Hysteresis -- 8.5.1. The Nature of Hysteresis -- 8.5.2. Hysteresis and Creep -- 8.5.3. Hysteresis Modelling: The Hysteron -- 8.5.4. Modelling the Martensite Fraction-temperature Hysteresis -- 8.5.5. Decomposition of Hysteretic Systems -- 8.6. Constitutive Relationships for Non-linear and Hysteretic Media -- 8.7. Shape Memory Alloy Actuators: Architecture and Model Structure.
8.7.1. Simulation and Inverse Modelling of Shape Memory Alloy Actuators -- 8.7.2. Control of Shape Memory Alloy Actuators -- 9. Controller Design for Flexible Structures -- 9.1. Introduction to Controller Design -- 9.2. Controller Synthesis for Structural Control -- 9.2.1. Problems Encountered in Structural Control: Spillover, Model Uncertainty, Non-causal Compensators and Sensor Noise -- 9.2.2. Concepts of Stability -- 9.2.3. Passive Controller Synthesis -- 9.2.4. Active Controller Synthesis and Compensation -- 9.2.5. Reduced-order Modelling: Balancing -- 9.2.6. Zero-spillover Controller Synthesis -- 9.3. Optimal Control Synthesis: H∞ and Linear Matrix Inequalities -- 9.3.1. The Basis for Performance Metric Optimization-based Controller Synthesis -- 9.3.2. Optimal H∞ Control: Problem Definition and Solution -- 9.3.3. Optimal Control Synthesis: Linear Matrix Inequalities -- 9.4. Optimal Design of Structronic Systems -- 9.4.1. Optimal Robust Design of Controlled Structures -- 9.4.2. Optimum Placement and Co-location of the Sensor and Actuators: The Active Clamp -- 9.4.3. Optimal Controller Design Applied to Smart Composites -- 9.4.4. Optimal Robust Stabilization of Smart Structures -- 9.5. Design of an Active Catheter -- 9.6. Modelling and Control of Machine Tool Chatter -- 9.6.1. Stability Analysis of Machine Tool Chatter -- 9.6.2. Feedback Control of Machine Tool Chatter.
There are no comments on this title.