000 01705cam a2200373 a 4500
001 32781
003 AE-DuAU
005 20241127172711.0
008 070608s2007 si a b 001 0 eng c
010 _a 2008270006
020 _a9789812706249 :
_c125.00
020 _a9812706240 :
_c125.00
050 0 0 _aQA76.87
_bG77 2007
090 _aQA 76.87 G77 2007
100 1 _aGraupe, Daniel.
_9157909
245 1 0 _aPrinciples of artificial neural networks /
_cDaniel Graupe.
250 _a2nd ed.
260 _aSingapore ;
_aHackensack, N.J. :
_bWorld Scientific,
_cc2007.
300 _axv, 303 p. :
_bill. ;
_c26 cm.
336 _2rdacontent
_atext
_btxt
337 _2rdamedia
_aunmediated
_bn
338 _2rdacarrier
_avolume
_bnc
490 1 _aAdvanced series on circuits and systems ;
_vvol. 6
504 _aIncludes bibliographical references (p. 291-297) and indexes.
505 0 _aFundamentals of biological neural networks -- Basic principles of ANNs and their early structures -- The perceptron -- The madaline -- Back propagation -- Hopefield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and the neocognitron -- Statistical training -- Recurrent (time cycling) back propagation networks -- Large scale memory storage and retrieval (LAMSTAR) network.
650 0 _aNeural networks (Computer science)
_98216
830 0 _aAdvanced series on circuits and systems ;
_vv. 6.
_9157910
852 1 _9P125.00usd
907 _a32781
_b06-01-11
_c05-29-11
942 _cBOOK
_00
998 _aaudmc
_b05-29-11
_cm
_da
_e-
_feng
_gsi
_h0
945 _g0
_i5028757
_j0
_laudmc
_o-
_p459.38
_q-
_r-
_s-
_t1
_u0
_v0
_w0
_x0
_yi12289711
_z05-29-11
999 _c32781
_d32781