000 | 03836cam a2200361 a 4500 | ||
---|---|---|---|
001 | ocn747717820 | ||
003 | AE-DuAU | ||
005 | 20241127174355.0 | ||
008 | 110823s2012 enka b 001 0 eng c | ||
020 |
_a1842656953 : _c84.95 |
||
020 |
_a9781842656952 : _c84.95 |
||
035 | _a(OCoLC)747717820 | ||
040 |
_aYDX _beng _cYDX _dBTCTA _dYDXCP _dYNK _dBWX _dOCLCQ _dTXA _dZ@L |
||
042 | _apcc | ||
049 | _aTSAA | ||
050 | 4 |
_aQA76.9.M35 _bR37 2012 |
|
090 | _aQA 76.9 .M35 R37 2012 | ||
090 | _aQA 76.9 .M35 R37 2012 | ||
100 | 1 |
_aRao, K. Chandrasekhara. _9150718 |
|
245 | 1 | 0 |
_aDiscrete mathematics / _cK. Chandrasekhara Rao. |
260 |
_aOxford, U.K. : _bAlpha Science International, _cc2012. |
||
300 |
_a1 v. (various pagings) : _bill. ; _c25 cm. |
||
336 |
_2rdacontent _atext _btxt |
||
337 |
_2rdamedia _aunmediated _bn |
||
338 |
_2rdacarrier _avolume _bnc |
||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _a1. Mathematical Induction -- 1.0. Introduction -- 1.1. Greatest Common Divisor -- 1.2. Least Common Multiple -- 1.3. Prime Numbers -- 1.4. Theory of Congruence -- 1.5. Mathematical Induction Principle -- 1.6. Well-Ordering Principle -- Exercise -- 2. Combinatorics -- 2.0. Introduction -- 2.1. Sets -- 2.2. Inclusion and Exclusion -- 2.3. Binomial Theorem -- 2.4. Multinomial Theorem -- 2.5. Allied Topics -- Exercise -- 3. Logic -- 3.0. Introduction -- 3.1. Propositions -- 3.2. Connectives -- 3.3. Truth Tables -- 3.4. Tautology and Contradiction -- 3.5. Logical Equivalences -- 3.6. Quantifier -- 3.7. Predicate Logic -- 3.8. Inference -- 3.9. Functionally Complete Sets -- 3.10. Duality -- Exercise -- 4. Functions -- 4.0. Introduction -- 4.1. Composition of Functions -- 4.2. Relations -- 4.3. Characteristic Functions -- 4.4. Permutations -- 4.5. Ackermann's Function -- 4.6. Primitive Recursive Functions -- 4.7. Mc Carshy's 91 Function -- 4.8. Equivalence Relations -- 5. Algebraic Systems -- 5.1. Introduction -- 5.2. Semigroups, Monoids -- 5.3. Groups -- 5.4. Subgroups -- 5.5. Cyclic Groups -- 5.6. Isomorphism -- 5.7. Normal Subgroups -- 5.8. Rings and Fields -- Exercise -- 6. Group Codes -- 6.0. Introduction -- 6.1. Coding Theory -- 6.2. Hamming Distance -- Exercise -- 7. Boolean Algebras -- 7.0. Introduction -- 7.1. Posets -- 7.2. Hasse Diagrams -- 7.3. Lattices -- 7.4. Karnaugh Maps -- 7.5. Boolean Algebras -- Exercises -- 8. Recurrence Relations -- 8.0. Introduction -- 8.1. Recurrence Relations -- 8.2. Rules for Writing C.f. -- 8.3. Rules for Finding Particular Solution -- 8.4. Generating Functions -- 8.5. Some Examples -- 8.6. Theorems -- Exercises -- 9. Graphs and Trees -- 9.1. Introduction -- 9.2. Graphs -- 9.3. Sub Graphs -- 9.4. Isomorphism -- 9.5. Some Special Classes of Graphs -- 9.6. Connectedness -- 9.7. Euler Graphs -- 9.8. Hamiltonian Graphs -- 9.9. Trees -- 9.10. Matrices -- 9.11. Planar Graphs -- 9.12. Colouring -- 9.13. Graphs K5, K33 -- 9.14. Directed Graphs -- 9.15. Shortest Path Problem -- 9.16. Dijkstra's Algorithm for Shortest Path -- 9.17. Algorithm for Minimum Spanningtrees (kruskal's Algorithm) -- 9.18. Spanning Trees -- 9.19. Networks -- 9.20. Solved Problems -- 9.21. Recapitulation -- 10. Computation -- 10.0. Introduction -- 10.1. Formal Languages -- 10.2. Phrase-Structure Grammar -- 10.3. Context-free Grammar -- 10.4. Automaton -- 10.5. Pushdown Automation -- 10.6. Regular Sets -- 10.7. Solved Problems -- 10.8. Finite State Automaton -- 10.9. Left Recursion Removal -- 10.10. Construction of PDA -- 10.11. Turing Machine (TM) -- Exercise. | |
650 | 0 |
_aComputer science _xMathematics _vTextbooks. _9150719 |
|
907 |
_a39051 _b07-16-13 _c07-16-13 |
||
942 |
_cBOOK _00 |
||
998 |
_aaudmc _b07-16-13 _cm _da _e- _feng _genk _h0 |
||
945 |
_g0 _i5134963 _j0 _laudmc _o- _p312.00 _q- _r- _sd _t1 _u0 _v0 _w0 _x0 _yi1492318x _z07-16-13 |
||
999 |
_c39051 _d39051 |