000 03836cam a2200361 a 4500
001 ocn747717820
003 AE-DuAU
005 20241127174355.0
008 110823s2012 enka b 001 0 eng c
020 _a1842656953 :
_c84.95
020 _a9781842656952 :
_c84.95
035 _a(OCoLC)747717820
040 _aYDX
_beng
_cYDX
_dBTCTA
_dYDXCP
_dYNK
_dBWX
_dOCLCQ
_dTXA
_dZ@L
042 _apcc
049 _aTSAA
050 4 _aQA76.9.M35
_bR37 2012
090 _aQA 76.9 .M35 R37 2012
090 _aQA 76.9 .M35 R37 2012
100 1 _aRao, K. Chandrasekhara.
_9150718
245 1 0 _aDiscrete mathematics /
_cK. Chandrasekhara Rao.
260 _aOxford, U.K. :
_bAlpha Science International,
_cc2012.
300 _a1 v. (various pagings) :
_bill. ;
_c25 cm.
336 _2rdacontent
_atext
_btxt
337 _2rdamedia
_aunmediated
_bn
338 _2rdacarrier
_avolume
_bnc
504 _aIncludes bibliographical references and index.
505 0 _a1. Mathematical Induction -- 1.0. Introduction -- 1.1. Greatest Common Divisor -- 1.2. Least Common Multiple -- 1.3. Prime Numbers -- 1.4. Theory of Congruence -- 1.5. Mathematical Induction Principle -- 1.6. Well-Ordering Principle -- Exercise -- 2. Combinatorics -- 2.0. Introduction -- 2.1. Sets -- 2.2. Inclusion and Exclusion -- 2.3. Binomial Theorem -- 2.4. Multinomial Theorem -- 2.5. Allied Topics -- Exercise -- 3. Logic -- 3.0. Introduction -- 3.1. Propositions -- 3.2. Connectives -- 3.3. Truth Tables -- 3.4. Tautology and Contradiction -- 3.5. Logical Equivalences -- 3.6. Quantifier -- 3.7. Predicate Logic -- 3.8. Inference -- 3.9. Functionally Complete Sets -- 3.10. Duality -- Exercise -- 4. Functions -- 4.0. Introduction -- 4.1. Composition of Functions -- 4.2. Relations -- 4.3. Characteristic Functions -- 4.4. Permutations -- 4.5. Ackermann's Function -- 4.6. Primitive Recursive Functions -- 4.7. Mc Carshy's 91 Function -- 4.8. Equivalence Relations -- 5. Algebraic Systems -- 5.1. Introduction -- 5.2. Semigroups, Monoids -- 5.3. Groups -- 5.4. Subgroups -- 5.5. Cyclic Groups -- 5.6. Isomorphism -- 5.7. Normal Subgroups -- 5.8. Rings and Fields -- Exercise -- 6. Group Codes -- 6.0. Introduction -- 6.1. Coding Theory -- 6.2. Hamming Distance -- Exercise -- 7. Boolean Algebras -- 7.0. Introduction -- 7.1. Posets -- 7.2. Hasse Diagrams -- 7.3. Lattices -- 7.4. Karnaugh Maps -- 7.5. Boolean Algebras -- Exercises -- 8. Recurrence Relations -- 8.0. Introduction -- 8.1. Recurrence Relations -- 8.2. Rules for Writing C.f. -- 8.3. Rules for Finding Particular Solution -- 8.4. Generating Functions -- 8.5. Some Examples -- 8.6. Theorems -- Exercises -- 9. Graphs and Trees -- 9.1. Introduction -- 9.2. Graphs -- 9.3. Sub Graphs -- 9.4. Isomorphism -- 9.5. Some Special Classes of Graphs -- 9.6. Connectedness -- 9.7. Euler Graphs -- 9.8. Hamiltonian Graphs -- 9.9. Trees -- 9.10. Matrices -- 9.11. Planar Graphs -- 9.12. Colouring -- 9.13. Graphs K5, K33 -- 9.14. Directed Graphs -- 9.15. Shortest Path Problem -- 9.16. Dijkstra's Algorithm for Shortest Path -- 9.17. Algorithm for Minimum Spanningtrees (kruskal's Algorithm) -- 9.18. Spanning Trees -- 9.19. Networks -- 9.20. Solved Problems -- 9.21. Recapitulation -- 10. Computation -- 10.0. Introduction -- 10.1. Formal Languages -- 10.2. Phrase-Structure Grammar -- 10.3. Context-free Grammar -- 10.4. Automaton -- 10.5. Pushdown Automation -- 10.6. Regular Sets -- 10.7. Solved Problems -- 10.8. Finite State Automaton -- 10.9. Left Recursion Removal -- 10.10. Construction of PDA -- 10.11. Turing Machine (TM) -- Exercise.
650 0 _aComputer science
_xMathematics
_vTextbooks.
_9150719
907 _a39051
_b07-16-13
_c07-16-13
942 _cBOOK
_00
998 _aaudmc
_b07-16-13
_cm
_da
_e-
_feng
_genk
_h0
945 _g0
_i5134963
_j0
_laudmc
_o-
_p312.00
_q-
_r-
_sd
_t1
_u0
_v0
_w0
_x0
_yi1492318x
_z07-16-13
999 _c39051
_d39051